A slightly modified version of the SIR inference video tutorial gives an error:
sir = Pumas.SIR(samples = 200, resamples = 100)
inf_sir = infer(iv1cmt_wt_egfr_results, sir, level = 0.95)
inf_sir.vcov.results
julia> inf_sir.vcov.results
Error showing value of type Pumas.BayesMCMCResults{Pumas.LogMarginal{PumasModel{ParamSet{NamedTuple{(:θcl, :θvc, :δeGFR, :Ω, :σ_add, :σ_prop), Tuple{RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, PDiagDomain{PDMats.PDiagMat{Float64, Vector{Float64}}}, RealDomain{Float64, TransformVariables.Infinity{true}, Float64}, RealDomain{Float64, TransformVariables.Infinity{true}, Float64}}}}, var"#5#17", var"#6#18", var"#8#20", var"#10#22", Central1, var"#11#23", var"#14#26", Nothing}, Vector{Subject{NamedTuple{(:CONC,), Tuple{Vector{Union{Missing, Float64}}}}, Pumas.ConstantCovar{NamedTuple{(:WEIGHT, :eGFR), Tuple{Float64, Float64}}}, Vector{Pumas.Event{Float64, Float64, Float64, Float64, Float64, Float64, Int64}}, Vector{Float64}}}, TransformVariables.TransformTuple{NamedTuple{(:θcl, :θvc, :δeGFR, :Ω, :σ_add, :σ_prop), Tuple{TransformVariables.ShiftedExp{true, Float64}, TransformVariables.ShiftedExp{true, Float64}, TransformVariables.ShiftedExp{true, Float64}, Pumas.PDiagTransform, TransformVariables.ShiftedExp{true, Float64}, TransformVariables.ShiftedExp{true, Float64}}}}, TransformVariables.TransformTuple{NamedTuple{(:θcl, :θvc, :δeGFR, :Ω, :σ_add, :σ_prop), Tuple{TransformVariables.Identity, TransformVariables.Identity, TransformVariables.Identity, Pumas.DiagonalTransform, TransformVariables.Identity, TransformVariables.Identity}}}, Vector{Float64}, Pumas.FOCE, Vector{Vector{Float64}}, Vector{Float64}, NamedTuple{(:optimize_fn, :constantcoef, :omegas, :ensemblealg, :diffeq_options), Tuple{Pumas.DefaultOptimizeFN{Nothing, NamedTuple{(:show_trace, :store_trace, :extended_trace, :g_tol, :allow_f_increases), Tuple{Bool, Bool, Bool, Float64, Bool}}}, NamedTuple{(), Tuple{}}, Tuple{}, EnsembleThreads, NamedTuple{(), Tuple{}}}}}, Vector{NamedTuple{(:θcl, :θvc, :δeGFR, :Ω, :σ_add, :σ_prop), Tuple{Float64, Float64, Float64, PDMats.PDiagMat{Float64, Vector{Float64}}, Float64, Float64}}}, Nothing}:
ERROR: ArgumentError: broadcasting over dictionaries and `NamedTuple`s is reserved
Stacktrace:
[1] broadcastable(#unused#::NamedTuple{(:θcl, :θvc, :δeGFR, :Ω, :σ_add, :σ_prop), Tuple{Float64, Float64, Float64, PDMats.PDiagMat{Float64, Vector{Float64}}, Float64, Float64}})
@ Base.Broadcast ./broadcast.jl:683
Also, it is not obvious to me how to extract the correlation between the estimates from the object.
I did not find any documentation on this, (which is why I was messing around with the internals of the object).
Finally, I noticed that a lot of dead links on:
https://docs.pumas.ai/dev/analysis/inference/
e.g. the first “infer” link.