Unable to specify a correct prior distribution

Hello,
Just follow up with the complete coding for this topic:

@time using Distributions, Pumas, CSV, TableView, StatsPlots, DataFrames, LinearAlgebra

ped_mod = @model begin

    @param   begin


      θ ~ Constrained(MvNormal([16.6,13.1,4.05,4.89,0.623,0,0,0],
      Matrix{Float64}([0.0895	0.0167	0.00318	0.0033	0.000907	0	0	0;
                       0.0167	0.0655	-0.00765	0.00333	-0.000917	0	0	0;
                       0.00318	-0.00765	0.0238	0.0147	-0.000225	0	0	0;
                       0.0033	0.00333	0.0147	0.0161	-0.000243	0	0	0;
                       0.000907	-0.000917	-0.000225	-0.000243	0.0016	0	0	0;
                       0	0	0	0	0	1000000	0	0;
                       0	0	0	0	0	0	1000000	0;
                       0	0	0	0	0	0	0	1000000])),lower=[0,0,0,0,-Inf,-Inf,-Inf,-Inf])


      Ω  ~ InverseWishart(3, diagm([0.282, 0.149, 0.0377]))


      σ_prop ∈ RealDomain(lower = 0)

    end

    @random begin
      η ~ MvNormal(Ω)
    end

    @covariates WTKG  CRCL

    @pre begin
    #--INSERT COVARIATE EFFECTS
    COV1=(CRCL/100)^θ[5]
    COV2=(WTKG/70)^θ[6]
    COV3=(WTKG/70)^θ[7]
    COV4=(WTKG/70)^θ[8]


    TVCLI = θ[1]*COV1*COV4
    TVCL  = TVCLI

    TVV1I = θ[2]*COV2
    TVV1  = TVV1I

    TVQI  = θ[3]
    TVQ   = TVQI

    TVV2I = θ[4]*COV3
    TVV2  = TVV2I

    CL  = TVCL*exp(η[1])
    V1  = TVV1*exp(η[2])
    Q   = TVQ
    V2  = TVV2*exp(η[3])

    Vc = V1
    Vp = V2

    S1 = V1

    #CALCULATION OF SECONDARY PARAMETERS
    KE  = CL/V1
    K12 = Q/V1
    K21 = Q/V2
    AA = KE+K12+K21
    ALPH = (AA+sqrt(AA*AA-4*KE*K21))/2
    BETA = (AA-sqrt(AA*AA-4*KE*K21))/2


    end

    @dynamics Central1Periph1 #a two compartment model


    @derived begin
        cp = @. 1000*(Central/Vc)
        DV ~ @. Normal(cp, sqrt((cp^2*σ_prop)))
      end
  end

inputDataset = CSV.read("dat.csv")
df = read_pumas(inputDataset, id = :ID, dvs =[:DV],  cvs=[:WTKG, :CRCL], evid=:EVID, amt=:AMT,cmt=:CMT, rate=:RATE, time=:TIME)


param = (
    θ=([18,14.2,2.13,4.29,1,1,1,1]),
    Ω  = Diagonal([0.25,0.25,0.25]),
    σ_prop = 0.04)

 pkres = fit(ped_mod, df, param, Pumas.FOCEI(),
              optimize_fn=Pumas.DefaultOptimizeFN(show_trace=true, extended_trace=false))

The error is saying no method matching inverse:

LoadError: MethodError: no method matching inverse!(::SubArray{Float64,1,Array{Float64,1},Tuple{UnitRange{Int64}},true}, ::Pumas.PSDTransform, ::Diagonal{Float64,Array{Float64,1}})

Closest candidates are:

inverse!(::AbstractArray{T,1} where T<:Real, !Matched::TransformVariables.ArrayTransform, ::AbstractArray) at C:\Users\.juliapro\JuliaPro_v1.4.2-2\packages\TransformVariables\a4AMY\src\aggregation.jl:79

inverse!(::AbstractArray, !Matched::Pumas.ElementArrayTransform, ::AbstractArray) at C:\Users\.juliapro\JuliaPro_v1.4.2-2\packages\Pumas\NCmSe\src\estimation\transforms.jl:25

inverse!(::AbstractArray, !Matched::Pumas.ConstantTransform, ::Any) at C:\Users\juliapro\JuliaPro_v1.4.2-2\packages\Pumas\NCmSe\src\estimation\transforms.jl:54

...

in expression starting at C:\Users\118

_inverse!_tuple(::Array{Float64,1}, ::Tuple{Pumas.ElementArrayTransform{TransformVariables.ShiftedExp{true,Float64},1},Pumas.PSDTransform,TransformVariables.ShiftedExp{true,Int64}}, ::Tuple{Array{Float64,1},Diagonal{Float64,Array{Float64,1}},Float64}) at aggregation.jl:196

inverse!(::Array{Float64,1}, ::TransformVariables.TransformTuple{NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Pumas.ElementArrayTransform{TransformVariables.ShiftedExp{true,Float64},1},Pumas.PSDTransform,TransformVariables.ShiftedExp{true,Int64}}}}, ::NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Array{Float64,1},Diagonal{Float64,Array{Float64,1}},Float64}}) at aggregation.jl:237

inverse(::TransformVariables.TransformTuple{NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Pumas.ElementArrayTransform{TransformVariables.ShiftedExp{true,Float64},1},Pumas.PSDTransform,TransformVariables.ShiftedExp{true,Int64}}}}, ::NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Array{Float64,1},Diagonal{Float64,Array{Float64,1}},Float64}}) at generic.jl:206

fit(::PumasModel{ParamSet{NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Constrained{MvNormal{Float64,PDMats.PDMat{Float64,Array{Float64,2}},Array{Float64,1}},VectorDomain{Array{Float64,1},Array{TransformVariables.Infinity{true},1},Array{Float64,1}}},InverseWishart{Float64,PDMats.PDMat{Float64,Array{Float64,2}}},RealDomain{Int64,TransformVariables.Infinity{true},Float64}}}},var"#548#603",var"#549#604",var"#550#606",Central1Periph1,var"#551#607",var"#577#633"}, ::Array{Subject{NamedTuple{(:DV,),Tuple{Array{Union{Missing, Float64},1}}},Pumas.ConstantCovar{NamedTuple{(:WTKG, :CRCL),Tuple{Float64,Float64}}},Array{Pumas.Event{Float64,Float64,Float64,Float64,Float64,Float64,Int64},1},Array{Float64,1},Float64},1}, ::NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Array{Float64,1},Diagonal{Float64,Array{Float64,1}},Float64}}, ::Pumas.FOCEI; optimize_fn::Pumas.DefaultOptimizeFN{Nothing,NamedTuple{(:show_trace, :store_trace, :extended_trace, :g_tol, :allow_f_increases),Tuple{Bool,Bool,Bool,Float64,Bool}}}, constantcoef::NamedTuple{,Tuple{}}, omegas::Tuple{}, ensemblealg::EnsembleSerial, kwargs::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{,Tuple{}}}) at likelihoods.jl:1330

(::StatsBase.var"#fit##kw")(::NamedTuple{(:optimize_fn,),Tuple{Pumas.DefaultOptimizeFN{Nothing,NamedTuple{(:show_trace, :store_trace, :extended_trace, :g_tol, :allow_f_increases),Tuple{Bool,Bool,Bool,Float64,Bool}}}}}, ::typeof(fit), ::PumasModel{ParamSet{NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Constrained{MvNormal{Float64,PDMats.PDMat{Float64,Array{Float64,2}},Array{Float64,1}},VectorDomain{Array{Float64,1},Array{TransformVariables.Infinity{true},1},Array{Float64,1}}},InverseWishart{Float64,PDMats.PDMat{Float64,Array{Float64,2}}},RealDomain{Int64,TransformVariables.Infinity{true},Float64}}}},var"#548#603",var"#549#604",var"#550#606",Central1Periph1,var"#551#607",var"#577#633"}, ::Array{Subject{NamedTuple{(:DV,),Tuple{Array{Union{Missing, Float64},1}}},Pumas.ConstantCovar{NamedTuple{(:WTKG, :CRCL),Tuple{Float64,Float64}}},Array{Pumas.Event{Float64,Float64,Float64,Float64,Float64,Float64,Int64},1},Array{Float64,1},Float64},1}, ::NamedTuple{(:θ, :Ω, :σ_prop),Tuple{Array{Float64,1},Diagonal{Float64,Array{Float64,1}},Float64}}, ::Pumas.FOCEI) at likelihoods.jl:1328

top-level scope at tp4_5.jl:118

Thanks!
Anqi